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Abstract

A new technique for calculating known goodness of fit

statistics for the Normal distribution is investigated.

Samples are generated for a Normal (0,1) distribution. The

means of these samples are calculated and the samples are

doubled by reflecting sample data points about the individual

sample means. This reflection of data points about the mean

is the new technique for generating modified statistics.

After the sample is doubled, critical values are calculated

for these modified Kolmogorov-Smirnov, Anderson-Darling, and

Cramer-von Mises statistics. Critical values are for the

original sample sizes. An extensive power study is done to

test the power of the three new statistics' critical values

versus the power for the same three statistics, calculated

without reflection.

Powers of the new statistics are asymptotically

slightly higher than the powers of their non-reflected

counterparts, when the distribution tested is also symmetri-

cal. The powers of new statistics are substantially lower

when the distribution tested is non-symmetrical. The powers

are substantially higher for the modified statistics when

the continuous Uniform distribution is tested.

Complete tables of critical values for sample sizes

n = 3 through n =60 are included for the modified

Kolmogorov-Smirnov and Anderson-Darling statistics.

ix

-



A NEW GOODNESS OF FIT TEST FOR NORMALITY

WITH MEAN AND VARIANCE UNKNOWN

I. Introduction

This thesis is an investigation of a technique that

involves doubling samples by reflecting the sample data

points about their arithmetic mean before calculating good-

ness of fit statistics. Tables are to be generated for the

Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises

statistics using this technique. The usefulness of the

tables is demonstrated by a comprehensive power study.

General Comments About

Goodness of Fit

Goodness of Fit--Definition. Goodness of fit is

based on the idea that one can take a set of data and deter-

mine how well it corresponds (or fits) with some known dis-

tribution. "Goodness" refers to the quality of this fit.

Typical Non-parametric Test. In the area of non-

parametric statistics, most goodness of fit procedures attempt

* 1 to establish a statistical test of fit which relies on a yes/

no decision rather than some measure of "goodness." The

typical test uses a null hypothesis, H0 : the data are from

some known continuous distribution. The alternative, HA, is

that the data are not from the hypothesized distribution.

Typically, the analyst is hoping to accept H0 . The purpose

1



of these tests is to determine if the data are distributed

similarly enough to the hypothesized distribution to ascribe

the properties of the hypothesized distribution to the popu-

lation from which the data were taken. For example, if the

analyst has a group of data he thinks is distributed expo-

nentially, he could use one of the goodness of fit tests to

reach a statistical conclusion about whether or not the

population from which the data are drawn is exponential.

For the more common theoretical distributions, tables

of critical values have been derived for different goodness

of fit statistics. One of these tables has been derived by

Lilliefors for the Kolmogorov-Smirnov (K-S) statistic and

the normal distribution with the parameters estimated from

the sample (Lilliefors, 1967). To use his tables, one would

calculate the statistic and compare it with the critical

value. If the calculated statistic were greater than the

critical value for the desired a-level (a is the probability

that H0 is rejected when H0 is true), H0 (that the data

being tested are normally distributed) would be rejected

(Lilliefors, 1967).

Power Problems. Since the non-parametric test in-

21 volves a yes/no decision rather than some proportional

measure of goodness, the power of a given statistic is very

important to the analyst. Power is the probability of re-

jecting H0 when HA is, in fact, true (Mendenhall & Schaeffer,

1973). The power of a given test provides some measure of

the quality of the statistical test itself. Thus, the power

2



is a measure of the degree of usefulness of the goodness of

fit test. If the power is low, then one cannot state the

distribution of the data with as much confidence as if the

power had been high.

One of the problems with many of the goodness of fit

statistics is that, with smaller sample sizes (n = 10), they

are not very powerful. (Throughout this paper, the term

"powerful" will be used to mean "of or having relatively

high power.") This lack of power is evident for the normal

distribution, in particular, even against skewed distribu-

tions (Green & Hegazy, 1976; Stephens, 1974). None of the

statistics, for which Green and Hegazy reported powers, had

powers greater than 0.5 when sample size was ten (Green &

Hegazy, 1976).

Another problem with goodness of fit tests is that

they are more powerful against some distributions than they

are against others (Lilliefors, 1967; Stephens, 1974; Green

& Hezagy, 1976). In that sense, power study results are

again useful to the analyst. For example, suppose H0 is

that some sample of data is drawn from a normal population.

Suppose the calculated goodness of fit test statistic is

-7,o .087. Suppose the critical value for that statistic is .079.

' iThe test statistic value is greater than the critical value,

so H0 would be rejected. In that case, the analyst could

refer to a power study and perhaps find that for this parti-

cular statistic, the power versus the exponential is .97.

He could then state with high confidence that the data is

3



not exponential, but normal. From another power study, he 1
might also find that the power versus the double exponential

is .36. Thus, he could not have as much confidence in a

statement that the data are not from a double exponential,

but from a normal population.

This research effort is an investigation of a new

method that will, hopefully, provide more powerful goodness

of fit tests for three of the common goodness of fit statis-

tics. The new method is the doubling of samples about the

sample mean before calculating the statistic. This technique

is applied to calculating critical values for the normal

distribution.

Three Test Statistics. The three test statistics

being used have been tested for their power when calculated

for the normal distribution (Stephens, 1974; Green & Hegazy,

1976; Lilliefors, 1967). These previous tests suggest a

methodology for the power studies done using the technique

being investigated here. The statistics which will be used

are the Kolmogorov-Smirnov (K-S) statistic (Massey, 1951),

the Anderson-Darling (A-D) statistic (Anderson & Darling,

1954), and the Cramer-von Mises (CVM) statistic (Anderson

%."1 & Darling, 1954).

The statistics are discussed in greater detail in

Chapter II, the background chapter of this report. It is

important to note that all statistics in this research are

calculated after estimating the mean and variance from the

sample data.

4



Primary Research Issue

The new statistical technique studied in this re-

search is motivated by the work of Schuster (1973; 1975).

Schuster suggests that samples of symmetrical distributions

can be reflected about the parameter of symmetry to generate

a new sample with identical parameters. He uses this con-

cept to develop a new statistic that uses two samples, the

original one and the reflected one (Schuster, 1973). The

technique suggested by this author results in a different

statistic than Schuster's. However, the statistics prob-

ably are not totally dissimilar. Both Schuster's and this

author's techniques can be expected to have similar charac-

teristics because they both use reflection.

The New Technique. The logic of the technique pro-

posed by the author follows. If a sample of some size, n

(e.g., n = 10), is taken from a normal population, the actual

number of points used to calculate the test statistic can be

doubled about the arithmetic mean of the sample data. In

other words, rather than calculating the critical values for

the normal distribution at n 1 10 with ten data points,

twenty actual points will be used. The technique is demon-

strated with an example in Chapter II.

More Restrictive Critical Values. It is felt that

the use of this reflection technique will result in the gen-

eration of more restrictive critical values. Because the

critical values supposedly will be more restrictive, it is

possible that the probability of rejecting H0 when H A is
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true will increase. In other words, the possibility that

the power will be greater when data points are reflected

about their mean will be investigated.

General Research Hypothesis. The general hypothesis

being t;ed to guide this research can be stated as follows:

Hypothesis: For the normal distribution, the K-S, A-D

and CVM statistics, modified by calculation after

doubling the sample by reflecting data points about the

sample mean, provide more powerful tests of goodness of

fit than do the same statistics calculated without

reflection.

While it is hypothesized that generally more power-

ful statistics will result from reflection, some implica-

tions from Schuster's work should be considered since he

also used reflection. First, Schuster proved that for his

statistic better results could only be expected when alter-

native distributions are also symmetric (Schuster, 1973).

One would, thus, not be surprised to find higher powers only

versus symmetrical distributions for the new statistic.

Second, Schuster only obtained better results asymptotically

when the parameters were estimated from the sample. In

other words, his statistic was "better" only for larger

sample sizes (Schuster, 1973). It should not be surprising

if this is also the case for the new technique.

Primary Purpose. The primary purpose of this thesis

is to test the above hypothesis and to generate tables of

critical values for the three previously mentioned statistics,

6



modified by doubling the sample by reflection. While the

basic hypothesis being tested is presented in the previous

paragraph, several other techniques are to be tested before

developing the computer programs for generation of critical

values. These are briefly described in the following para-

graphs. More detailed discussions are presented in Chapter

II.

Bootstrap Technique

Continuous vs. Discrete. Prior critical value tables

have been determined by calculating and ordering statistics

for a large number of random samples from the test distribu-

tion. If 1000 statistics are calculated, the critical value

for a = .05 is the 950th largest order statistic. The pro-

cess uses discrete values to determine critical values for

continuous distributions.

The bootstrap technique developed by Efron (1979)

and recently demonstrated by Johnston (1980) is a method for

representing these order statistics on a continuous spectrum.

This is done by plotting the values of the order statistics

and representing the spaces between them as piecewise linear

functions (Efron, 1979; Johnston, 1980).

Interpolation. If the order statistics are plotted

versus a plotting position that would represent each of the

L order statistics on a scale between zero and one, it is pos-

sible to interpolate for the desired percentile and, there-

fore, extract a more accurate value. It is also possible

7
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that by using this technique, cost savings can be realized,

since fewer random deviates may have to be generated in order

to get consistent critical values at the desired a levels.

Plotting Positions

As mentioned above, the bootstrap technique requires

the use of some plotting position to scale the order statis-

tics between zero and one. Three different plotting posi-

tions are tested to see if there is any noticeable arithmetic

difference among them with large numbers (n > 100). The

three plotting positions tested are called the median rank,

a modified step rank, and the average of mean and mode ranks.

These three plotting positions are presented in detail in

Chapter II.

If the differences among the three plotting positions

are judged to be minor, only one of the positions will be

used. If there are major differences, then critical values

will be calculated using all three positions, and only the

most powerful results will be tabled.

The reason these positions are the ones being tested

is that they all have a desired symmetrical property. They

all provide symmetry in the following sense. Suppose one has

a graph with order statistics on the horizontal axis and

plotting position on the vertical axis. The vertical com-

ponent of the plot at the first order statistic is identical

to the quantity: one minus the vertical component at the

last order statistic.

8



Presentation of Research

The report on this thesis effort is presented in

five chapters. The first of these is this introduction.

Although the introduction is meant to be detailed enough for

a reader familiar with the research area, Chapter II is a

background chapter for the use of anyone interested in more

details about the techniques that have been discussed in the

introduction.

The methods used to examine the above techniques are

presented in Chapter III. The results of the research des-

cribed in Chapter III are presented in Chapter IV. Chapter

IV is a discussion of what happened. Tables of critical

-* values and results of power studies are located in this

chapter. The final chapter consists of conclusions and

recomwendat ions.

Primary Purpose Reemphasized

The primary purpose of this research effort is to

test the technique of reflecting data points about the mean

and to create tables of critical values of the modified K-S,

A-D, and CVM statistics for the normal distribution using
that technique. Statistics are calculated using normalized

data with the mean and variance estimated from the sample.

9



II. Background

In the previous chapter, the basic concepts and

techniques being studied in this thesis were presented.

This chapter explains some of those techniques in greater

detail. The chapter is divided into five sections. These

include some introductory comments; a presentation of the

three plotting positions to be examined; a discussion of the

K-S, A-D, and CVM statistics; further explanation of the

bootstrap technique; an example of doubling samples by re-

flecting them about their means; and a summary.

Introductory Comments

Purpose. The purpose of this chapter is to present

more detailed discussions of some of the techniques mentioned

in Chapter I. This chapter is meant to be used as a refer-

ence chapter. One familiar with the research area might not

need to read this chapter.

Format. The format is different than that used in

Chapter I. The sequence is now the order in which the ideas

are studied in the research. The following is a list of the

II . topics in the order of discussion:

a. Plotting positions

b. Three statistics

1. K-S (Kolmogorov-Smirnov)
2. A-D (Anderson-Darling)
3. CVM (Cramer-von Mises)

10



c. Bootstrap technique

d. Doubling samples about the mean

Plotting Positions

Why? From Chapter I, the reason the plotting posi-

tion is necessary is to provide a vertical plot scaled between

zero and one. A vertical plot is required for each value of

the order statistic represented on the horizontal axis.

Consider drawing n samples and calculating the same statistic

for each sample. The results would be a set of n statistics.

When ordered, the set is of n order statistics. Given the

set of order statistics, X(1), X(2), X(3 ), ..., X(n), n is

the total number of statistics and i is the rank of a given

statistic, i = 1,2,3,...,n. For example, the rank of X(3)

is 3, or i = 3. Letting the value of order statistics be

represented by the horizontal axis and letting the vertical

axis be scaled between zero and one, the plotting positions

being tested allow the statistics to represent points on a

continuous function.

For example, let n = 10 samples. Suppose this re-

sulted in the ten statistic values in order (Xi) listed

below. If one used the median rank (which is defined later)
as the vertical plotting position (Y~i) he would get the

list as shown on the next page. These values are plotted in

Fig. 1. If straight lines are drawn between the plotted

positions, a piecewise linear continuous function results.

In the research, each of the three plotting positions

i 11



Y(i)

1.0:

0.5'

0I II -I " I I' '". J(j)

0.5 1.0

Fig. 1. Example (Order Statistics vs Median Ranks)

i X(i) Median Rank (Y(i))

1 .22 .067

2 .41 .163

3 .42 .260
4 .67 .356

5 .98 .452

6 1.02 .548

7 1.03 .644

8 1.08 .740

9 1.12 .837

10 1.13 .933

12

4 ~ iz x: j j _



will be examined to see if there is much difference among

them with values of n greater than 99.

The plotting positions are now described in detail.

Median Rank. The formula for median rank is as

follows:

i - 0.3
median rank = n +0.4

where

i = rank of order statistic being plotted

n = total number of order statistics

The above formula is well known. From the example, suppose

the statistic being plotted is X(5 ) = 0.98. In this case,

where n = 10, the median rank is as follows:

5 - 0.3 4.7
median rank - 10 + .4 - 1 = .452 (2)

A property of this plotting position worth noting

is that X(1 ) is the same distance from zero as X (n) is from

one. For instance at n = 10, the median rank for X =
(1)

.067 and for X (10) .93. Let the median rank of X M be

defined as Y Then, Y - 0.0 = .067 and 1.0 - Y
(i), Y(1) (0

.067. This is the desired symmetry discussed in Chapter I.

Modified Step Rank. The second ranking procedure

discussed is the modified step rank. To understand this,

one must first know the step rank formula. The formula for

the step rank is also well known and is as follows:

step rank = i 1 (3)

n

13



The reason this formula needs to be modified is that it does

not have the same type of symmetry as that shown for the

median rank. For example, again let n = 10, then for i = 1,

the step rank is 0.0. For i = 10, the step rank is 0.9.

If Y M is the step rank of X (i) , then 1 - Y(10) = 0.1 and

Y(1) - 0.0 = 0.0. The desired symmetry does not exist.

The desired symmetry can be obtained if the follow-

ing modification is made:

modified step rank -i = 0.5 (4)n

Let Y(i) be the modified step rank of X(i) . Then, at n = 10,

Y(1) = 0.5 and Y (10) = 0.95. If follows that Y(1 ) 0 = 0.05

and 1 -Y( 10) = 0.05. Hence, the desired symmetry exists.

Average of Mode and Mean Ranks. The last plotting

position discussed uses the average of the mode and mean

ranks. The formulas for the mean and mode ranks are also

well known. Three ranks are presented below--the mode rank,

the mean rank, and the average of the two:

mean rank = 1 (5)i n +-l 1s

mode rank = i-1
n-1 (6)

"I n*-i + i--i

average =(7)

The mode and mean ranks do not have the desired symmetry

about zero and one. The average of those two ranks does.

Though not done here, this fact can be easily demonstrated.

14



Three Statistics

This section is a presentation of the three statis-

tics being studied. All statistics will be discussed as

they apply to the normal distribution. The parameters of

the normal distribution, uj and a, are unknown and will be

estimated for each sample by their maximum likelihood esti-

mators, i and S (Mendenhall & Scheaffer, 1973), where

n

n 2
E (xi-X)

S= i=l1
n-l (8)

S V7-2 (9)

Kolmogorov-Smirnov (K-S). Statistic. The common

symbol for the K-S statistic is D. The statistic is defined

(Massey; 1951; Lilliefors, 1967) as

D = maxlF*(x) - SN(X)I (10)

where

the sample data points are ordered,

F*(x) - normal CDF value of a given data point,

SN(X) = sample cumulative step function.

x and S are needed to find F*(x). SN (x) has two values for

each ordered data point. These values are i/n and (i-l)/n,

where i is the rank of the ith ordered data point and n is

the sample size. The following is an example of how to

is



calculate the K-S statistic for a given sample:

x SN (X) F*(x) IF*(x)-SN(X)I

0.2 0.000 0.125 0.1038 .1038 .0212

1.6 .125 .250 .2033 .0783 .0467

2.1 .250 .375 .2483 .0017 .1267

3.0 .375 .500 .3446 .0304 .1554

4.8 .500 .625 .5596 .0596 .0654

5.0 .625 .750 .5871 .0379 .1629

8.1 .750 .875 .8790 .1290 .0040

9.6 .875 1.000 .9484 .0734 .0516

D = maxlF*(x) - SN(x)I = .1629

x = 4.3, S = 3.249, n = 8

Anderson-Darling (A-D) Statistic. A common notation

for the A-D statistic is W2 (Anderson & Darling, 1954). Let

X(1) _ (2) _ (3)  X(n) be n observations from the

sample in order. Let ui = F(X(i)) = the normal CDF value

with x and S as estimators of p and a. Then, the A-D statis-

tic (Anderson & Darling, 1954) is

2  1 n
= -n - Z (2j-l)[ln u. + ln(l - u n j + l)] (11)

j=ln-l

Letting A = In u. and B = ln(l - Unj+l), the following is
J n4 a numerical example using the same data points as the K-S

sample:

j x F(x) = Uj Un-j+l A B (2j-I)(A+B)

1 0.2 .1038 .9484 L2.265 -2.964 - 5.229

2 1.6 .2033 .8790 -1.593 -2.112 -11.115

3 2.1 .2483 .5871 -1.393 - .885 -11.390

4 3.0 .3446 .5596 -1.065 - .820 -13.195

16



j x F(x) = uj Unj+ 1  A B (2j-I)(A+B)

5 4.8 .5596 .3446 - .581 -.423 - 9.036

6 5.0 .5871 .2483 - .533 -.285 8.998

7 8.1 .8790 .2033 - .129 -.227 4.628

8 9.6 .9484 .1038 .053 -.110 2.445

= -66.036

A-D = W 2 = -8 - (1/8)(-66.036)

= -8 - 8.2545

= .2545

Cramer-von Mises (CI) Statistic. The Cramer-von

Mises statistic (Anderson & Darling, 1954) is the third to

be studied in this research.

Let n = sample size,

U. F(X .) = CDF value for normal distribution,
u i

and
X ... X be n observations in

(1) X 2) <X(3) -'Xn)

order,

then
1 n

CVM [u (2 -1)2 (12)

The following is a numerical example of calculation of the

CVM statistic:

j x F(X) -u. A = (2j-l)/2n (uj - A)2

1 0.2 .1038 .0625 .00171

2 1.6 .2033 .1875 .00025

3 2.1 .2483 .3125 .00412

4 3.0 .3446 .4375 .00863
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j x F(X) = uj A = (2j-1)/2n (u. A)2

5 4.8 .5596 .5625 .00001

6 5.0 .5871 .6875 .01008

7 8.1 .8790 .8125 .00442

8 9.6 .9484 .9375 .00012

Z = .02934

CV = 1/(12)(8) + .02934

= .01042 + .02934

= .03976

Bootstrap Technique

The bootstrap technique is used in this thesis as it

was demonstrated by Johnston (1980). One of the three plot-

ting positions tested will be used to represent the vertical

axis from zero to one. The value of the n test statistics

will be the horizontal components. Lines between the plots

will be interpolated, as was demonstrated in Fig. 1.

Extrapolation. In addition to the interpolations,

extrapolations are necessary to find values for X(0) and

X (n+l) where X iMis the ith order statistic, i = 0,1,2,

...,n,n+l. If Y (i) represents the vertical rank determined

by one of the ranking procedures, Y(1) is greater than zero
and Y(n) is less than one. Since a vertical scale from zero

to one is desirable in order to find critical values for any

level of significance between zero and one, values of X(0)

and X(n+l) must be found for Y() = 0 and Y (n+l) = 1.

To find X(0), the slope of the line between X(1 )

and X(2) is determined. That line is then extrapolated to
18



its intercept with the x-axis. If the intercept is greater

than or equal to zero, then X(O) equals the intercept value.

If the intercept is less than zero, then X(0) = 0. (Since

all of the statistics being tested yield non-negative values,

X () cannot be allowed to be negative.) The line between

X (0) and X(1) is, then, interpolated.

To find X(n+l), the same technique is used, except

negative values are not a problem. The line between X(n-)

and X(n) is formed. That line is then extended to its inter-

cept with the line Y(i) = 1. The intercept value is the value

for X n+l) .

Figure 2 is a display of the above three situations.

Graph (a) depicts the situation where the x-intercept is less

than zero. In that case, the solid line is the line from

(X(0),Y(0)) to (X(1),Y( 1)). Graph (b) is the case in which

the x-intercept is greater than or equal to zero. Graph (c)

of Fig. 2 represents finding X(n+l)*

Finding the Critical Value. To find a critical

value, all that is necessary, graphically, is to find 1 - a

on the vertical axis and extend along the line, Y M = 1 -,

to intercept the plotted function. The value of the horizon-

tal component is the critical value of the statistic at

significance level a.

Finding the critical value with a computer requires

finding the largest Yi that is less than I - . Suppose
* (i)

that Y M is the kth largest rank. Then, the standard linear

slope-intercept formula (y = mx + b) is used to find the
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Y
(a)

y (2 ) --

X(0 ) X(1 ) X(2 )

(b)

y ( 2 ) 10 V

Y l)/ / I) -

0 X 0)X4( 1 ) X(2)

1.0()

Y (n)

0.0 X
00(n-i1) X(n) X(n+1)'

Fig 2. Three Examples of Extrapolation
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critical value. The change in y can be found using Y(k) and

Y (k+l) Similarly, the change in x can be found using X(k)

and X(k+l). After finding the constant, b, at (X(k),Y(k)).

one can then let y equal 1 - a in order to find x, the

critical value.

Example of Technique. As in the example in Fig. 1,

suppose ten samples are taken. Let the following numbers be

the ten statistics calculated:

i Modified Step Rank (Y(i)_ Statistics (X(i))-

1 .05 .22

2 .15 .41

3 .25 .42

4 .35 .67

5 .45 .98
6 .55 1.02

7 .65 1.03

8 .75 1.08

9 .85 1.12

10 .95 1.13

In Fig. 3, the statistics are plotted versus their modified

step ranks. From the above list,

Y - 0.05(1)
Y - 0.15(2)

X( ) -0.22

X(2 ) -0.41

Using the equation, y - mx + b,

YiL2) " Y *) .15 .05 =05
m r- slope - Y(2) X(1) - .52
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1.0 ------ ---------

0.9- - - - - - - -

0.5 1

X(0  critical value (al .10) (11

Fig 3. Example of Bootstrap Technique

b Y(1) "(1)

b OS.5 (.52)(.22) - .06S

and

X 0.0 -b . .065 = 125
m TY

Since x =.12S > 0, X(o) - x. Again, if x had been less than

zero, X(o) would have been set equal to zero.

Extrapolation for X (11) is performed the same way.
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Y(10)' Y(9)' X(10 )' and X(9) are used to find the slope. The

constant, b, is calculated at either (X(Io),Y(10)) or at

(X , ). Then, X(II) = [(l.0-b)/m], where m is the slope.

Now that the function is continuous (by extrapolation)

on the interval (0,1), the critical values can be found. At

- .10, previous studies (Lilliefors, 1967; Green & Hegazy,

1976; Anderson & Darling, 1954; Massey, 1951) would have

picked 1.12, or the ninth largest statistic as the critical

value. Using the bootstrap method, the value is 1.125 (if

modified step ranks are used).

To get the critical value using the bootstrap tech-

nique, the largest Y(i) less than or equal to .90 is found.

In this case, this is Y(9 ) = .85. Therefore, k = 9 and

k + 1 = 10. Then,

m = (10) Y( 9 ) .95 - .85 .10 1
X(10- X(9 )  1.13 - 1.12(10) (9

b = .85 - (10)(1.12) = .85 - 11.2 = -10.35

and

critical value = .90 - (-10.35) = 1.125
10

As one can see, the critical value will vary with

statistics calculated for random samples. One of the issues

of this research is the number of samples needed to get con-

sistent results.

Doubling Samples About the Mean

The following is a description of the technique of

doubling samples about their means. First, a sample of

23
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x x n+i

I I
I I

1 1.0

.0?

2.4 3.4 4.4

Fig 4. Doubling Samples About the Mean

random deviates is collected. Second, the arithmetic mean

is calculated.

The third step has several sub-steps. Let i = 1,2,

3.,...,n, and n be the number of random deviates in a sample.

Then, the new deviate (created by reflection about the mean)

is xni = 2x - xi . Looking at Fig. 4, suppose x. = 2.4

and the mean of all the x1is is x = 3.4. Then, Xni

2(3.4) - 2.4 = 4.4. Notice that both points are equidis-

tant from the mean. The mean from the newly created sample

is the same as the original one.

Example. An example is presented in Table I. The

first column is the five data points in the original sample.

The second column is of the left-hand sides of five equations,

representing 2x - xi  for each data point. The third

column is the reflected data point.
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TABLE I

Reflection of Data Points About the Mean

Data Points 2i - x. Reflected Data
(n = 5) 1 Point

0.2 2(3.4)- 0.2 - 6.6

1.6 2(3.4)- 1.6 = 5.2

2.1 2(3.4)- 2.1 - 4.7

5.0 2(3.4)- 5.0 = 1.8

8.1 2(3.4)- 8.1 - -1.3

Before reflection: x = 3.4

After reflection: x = 3.4

Summary

This chapter is a set of detailed discussions of

techniques referred to in Chapter I. The techniques discussed

are plotting positions (ranking techniques), the three statis-

tics studied, the bootstrap technique, and the procedure of

doubling samples about their arithmetic mean. Specific

references will be made to this chapter in the following

chapter on procedure.

2
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III. Procedure

The techniques to be used in the experimental pro-

cedure have been presented in detail in Chapters I and II.

This chapter is a discussion of how those techniques are to

be applied. Since all of the data are generated using

Monte Carlo simulation of pseudo-random deviates, this is

essentially a chapter about how the previously discussed

techniques are combined into computer programs to generate

and manipulate Monte Carlo data for testing the research

hypothesis presented in Chapter I.

This chapter has four major sections. The first is

about how the three plotting positions are to be tested.

The second concerns the calculation of statistics and their

critical values. The third section is a discussion of the

generation of tables of critical values. In the last sec-

tion, the construction of the power study is presented.

Plotting Positions

The purpose of the first phase of research is to

compare three plotting positions. The search is for meaning-

ful differences among the median rank (M), modified step rank

(MS), and the average of the mean and mode ranks (AMM) at

various values of n (n is the number of statistics to be

plotted). If there are meaningful arithmetic differences,

all three will be used. If no meaningful differences exist,
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only the modified step will be used for simplicity. "Meaning-

ful" is an intentionally loose term. The researcher cannot

judge whether the differences are important, or "meaningful",

until he has seen what the differences actually are. The

plotting positions, themselves, are thoroughly discussed in

Chapter II.

The Computer Program. Since visual comparisons of

plotting positions for each value of i (i = 1,2,3,...,n) are

desired, the comparison is done via computer. The program

used is simple and is included in Appendix A. The program

has the following three major steps:

1. For some n, find the value for each plotting

position at every i, i = 1,2,3,...,n

2. Find the differences among the three plotting

positions at each value of i.

3. Print out for every value of i:

a. the values of the three positions

b. the absolute value of:

1. M - MS

2. M- AM I

3. AMM - MS

The program is run for n =100, n =150, and n = 300 statistics.

Calculation of Statistics and
Critical Values

The calculation of statistics for random samples is

at the heart of this research effort. All programs that are

used calculate statistics. All either calculate or use
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previously calculated critical values. The point is that

all the programs use much of the same flow and code to

accomplish these calculations.

The four basic steps used in the programs include

the following:

1. Calculating statistics (using different sub-

routines for each statistic),

2. Storing the statistics in a vector array,

3. Ordering the elements of that array from

smallest to largest, and

4. Calculating critical values using the bootstrap

method that was discussed in Chapter II.

Subprogram for Calculating Statistics. The logic

for that portion of each program that deals with calculating

the statistic is shown in Fig. 5. The letter on the right-

hand side of each block is the block identifier.

Subprogram for Finding Critical Values. The logic

for that portion of each progran that is used to find the

critical values is shown in Fig. 6.

Testing the Program. The program can be tested for

validity, since tables of critical values for the straight-

WI forward calculation of the Kolmogorow-Smirnov (K-S) statis-

tic are readily available. With 5000 samples, the program

can be run without estimating the parameters, i.e., assuming

P = 0 and a = 1. These critical values can be compared with

those obtained by Massey (Massey, 1951, p. 70). Once this

is done, the program is modified as shown in Fig. 7. The
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Generate ordered randomA
deviates from Normal (0,1) A

F Find CDF value forB
each data point

Calculate K-S
statistic

store statistic in aD
vector array of length n

Reiterate the above
flow n times

Fig 5. Subprogram for Calculating Statistics

Order the Array A
of statistics

Extrapolate for the Oth I B
and n+lst order statistics

* Find critical value
using bootstrap

Fig 6. Subprogram for Finding Critical Values
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Block A of
Figure 5

+

Calculate R and S i
for sample A-i

+i

Calculate

x. - x
Z i A-2

for each data point (xi)

+

Replace original data
point (xi) with z A-3

Block B of
Figure S

Fig 7. Program Logic for Standardizing
the Data

three logic blocks in Fig. 7 fit between blocks A and B of

A Fig. 5. With this modification, the program will generate

critical values after estimating the parameters of the nor-

mal by x and S and standardizing the data. When this is done

with 5000 samples, the results can be compared with those of

Lilliefors (Lilliefors, 1967, p. 400).
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The Number of Samples to Use. The next research issue

to investigate is if the bootstrap method will allow the use

of considerably less than 5000 order statistics to calculate

the critical values.

To do this test, critical values are calculated for

the K-S statistic using 150, 300, 500, 1000, and 5000 samples.

All samples are generated by Monte Carlo simulation and using

different seeds. If the values are essentially the same at

500, 1000, and 5000 samples, then critical values for tables

can be calculated using only 500 samples. Similarly, if the

values are the same for 300, 500, 1000, and 5000, then 300

samples would be enough. The point is that if the researcher

wants to use 300 samples to generate tables of critical

values, the critical values at 300 must be the same as those

calculated using 500, 1000, and 5000. Five thousand samples

is the number of samples commonly used in the literature to

generate tables. The hope is that fewer will be needed by

using the bootstrap technique. Whatever number of samples are

used, however, must be consistent with the results at 5000

samples to be acceptable.

In addition to this vertical comparison, cross com-

parison with critical values found using different initial

seeds to the random number generator are necessary. In one

vertical comparison, the values might be essentially the same

at 500, 1000, and 5000 samples. However, using a different

seed, this may not hold true. The only consistency might be

at 1000 and 5000. The critical values must be consistent
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for a given number of samples--no matter what seed is used--

if that number of samples is going to be used to construct

valid, accurate tables.

The program used to test this issue is included in

Appendix D.

Program Subunits (Author's). Several subroutines

have been written by the author for use in the various pro-

grams. The code for these subroutines is included in Ap-

pendix C. The purposes and names of these subroutines are

discussed in the following paragraphs.

Three subroutines are used in the calculation of the

K-S statistics. These are CVALS, LILDIF, and DSTAT. ANDAR

is used to calculate the Anderson-Darling statistics, while

CVM is used to calculate the Cramer-von Mises statistics.

In addition to the five above, four subroutines are

used in a variety of programs. Their names and uses are

listed below:

ESTPAR - Takes an input vector array of data points

(xi) and calculates x and S. It then

standardizes the data via the transforma-

*tion,

x. - X
=r 121 1i S

and outputs a vector array of standardized

data points (zi).

DUBSAM - Takes an input vector array of length n,

calculates the mean of the vector elements,
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reflects vector elements about the mean,

and generates an output array of length 2n,

which includes the original array elements

plus their reflections.

XPOLAT Used as part of the bootstrap technique.

Input is a vector array of no order statis-

tics. It extrapolates for X (n+l) and X(0) ,

Output is an array of length, n + 2.

CVALUE Input is an array of order statistics.

Output is a set of critical values based on

the elements of that array.

Program Subunits (IMSL). In addition to the author's

own subroutines, several subroutines from the International

Mathematical and Statistics Library (IMSL) are used. These

include the following:

GGNO - Generates an array of ordered N(0,1) random

deviates.

MDNOR - For an input data point, outputs the CDF

value of the standard normal distribution.

VSRTA - Orders the elements of an input array from

smallest to largest.

Generation of Tables of
Critical Values

Once the number of samples needed to get accurate

critical values has been determined, the next step in the

research is the generation of critical value tables. The

tables to be generated are for the Kolmogorov-Smirnov (K-S),
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Anderson-Darling (A-D), and Cramer-von 'Mises (CVM) statistics

for sample sizes n = 3 through n = 60. The critical values

are for modified statistics--statistics calculated after

sample data points are reflected about the sample mean.

At this point the researcher is faced with a choice.

The choice is between using a complex program that produces

an entire table of critical values or using a simple program

and reiterating it for each sample size. The second option

is chosen despite the fact that it forces manual construction

of the tables. This disadvantage is outweighed by the much

more rapid computer turnaround for the simple program.

As a result of using the simpler methodology, each

final table requires the submission of 171 programs-- 57 for

K-S, 57 for A-D, and 57 for CyM1. These individual programs

are similar to the one described in the previous sections of

this chapter. The only change is that in these programs,

the samples are doubled by reflection about the sample means.

This is done by subroutine DUBSAM after generating the ran-

dom deviates and before standardizing the data. This step

occurs between logic block A of Fig. 5 and logic block A-1

of Fig. 7. The program will generate critical values for

a = .20, .15, .10, .05, and .01 for a given value of n.

In addition to the above programs, twelve more are

required to generate critical values for use in the power

study. Since the powers are to be compared at n = 10, 25,

40, and 60, critical values at a = .20, .15, .10, .05, and

.01 must be determined without reflecting the sample. This
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is done for each of the three statistics at each of the above

four values of n.

Power Study

The purpose of the power study is to test the research

hypothesis that the technique of reflecting data points about

their means will result in goodness of fit tests with higher

powers thanones which do not use that technique.

The power study is done at n = 10, n = 25, n = 40,

and n = 60. The reasons for using these sample sizes are

that 1) power comparisons will be available for both small

and large sample sizes, and 2) trends in the behavior of the

statistics' critical values can be observed.

The logic of the power study program follows. First,

a sample is drawn from some distribution other than the normal.

Second, the test statistic is calculated. Third, a compari-

son is made between the test statistic and the critical value

for each level of a. If the test statistic is greater than

the critical value, normality is rejected. The first three

steps are then reiterated 5000 times. Each rejection is

counted. The power at each a-level is computed by dividing

the number of rejectionsby 5000. The results are then printed

out.

Six statistics are calculated for each value of n.

These statistics are the following:

1. K-S

2. K-S reflected
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3. A-D

4. A-D reflected

S. CyI

6. CVNI reflected

As with the generation of tables, the choice is made

here to submit simple programs and then construct tables

manually. Thus, to find the power of the statistics for the

normal against some other distribution, four programs are

required--one for each value of n. So, if seeking the power

against five distributions, twenty programs are required.

Different seeds are used for each run.

Flow of Typical Program. Figure 8 is a display of

the logic of the typical program used in the power study.

The flow in Fig. 8 is for finding the power of each of the

six statistics against the exponential distribution at sample

size, n = 10. The code for this particular program is in-

cluded in Appendix F as an example of the FORTRAN code used.

The Distributions Used. The distributions used in

this power study are the exponential, Cauchy, chi-squared

with four degrees of freedom, the chi-squared with one degree

of freedom, and the double exponential. The exponential

random deviates are generated by the IMSL subroutine, GGEXN.

The Cauchy deviates are generated by GGCAY (IMSL), and the

chi-squared ones are generated by GGCHS (IMSL).

The IMSL does not include a subroutine for the double

exponential. Therefore, double exponential deviates are

generated using the following technique. Continuous uniform
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Generate sample of 10
exponential random deviates

E

Calculate the six
statistics

4-

Compare with their corresponding
critical values (reject if
test statistic > critical value) C

+

Count rejections at D
each a- level

+

Reiterate steps A Ethrough D 5000 times

+

Calculate the powers IF
at each a- level

4

Print the number of IG
rejections and the powers

Fig 8. Flow for Typical Power Study Program

random deviates, Ui, are generated by GGUBS (IMSL). The CDF

of the double exponential [F(yi)] is as follows:

Te1,y. < 0

F(y) Yi 0
1-fe , yi >0
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Therefore, if U.z 0.5, then yi = in(2Ui), and

if U > 0.5, then yi = -in(2 - 2Ui).

Thus, yi, i = 1,2,...n, is a pseudo-random sample from the

double exponential distribution (Littel, McClave, and Offen,

1979, p. 265).

Programs in the Appendices

An example of each type of program described in this

chapter is included as an appendix. The following is a list

of the appendices and the type of program or information

included in each:

Appendix A: COMPAR - the program for comparing

plotting positions.

Appendix B: Results of COMPAR - the results of

program, COMPAR, when 150 points are

to be plotted.

Appendix C: Subroutines - the computer code for

the subroutines written by the author.

Appendix D: COMLIL - the program used to validate

the logic used in finding critical values

for the Kolmogorov-Smirnov statistic.

This program is used to determine the

number of samples to use for the boot-

strap technique.

Appendix E: TABLE2 - the program for finding criti-

cal values of the modified Anderson-

Darling statistic.
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Appendix F: POWERS - the program for finding the cri-

tical values of the six statistics at

sample size, n = 10, when the Cauchy is

the alternative distribution.

All programs are written in FORTRAN V and are run on the

Control Data Systems CDC 6600 computer which is operated by

the Aeronautical Systems Division at Wright-Patterson AFB, Ohio.

Summary

This chapter is a presentation of the basic methodo-

logy used in the research. Flow diagrams are used to portray

typical logic used in the different computer programs. The

presentation includes discussions of 1) how plotting posi-

tions are compared, 2) how statistics and critical values

are calculated, 3) how the tables of critical values are

generated, and 4) how the power study was done.

The next chapter is a presentation of the results of

this research.
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IV. Results

This chapter is a presentation of the results of the

research procedures described in the previous chapter. First

to be discussed are the results of testing the three plotting

positions. The section on plotting positions is followed by

a section which reports the appropriate number of samples to

use when finding the critical values. This is followed by

the two major sections of the chapter--ones in which the

tables of critical values and the results of the power study

are presented. The chapter ends with a brief summary.

Test of Plotting Positions

The purpose of this testing of the plotting positions

was to determine if there was any noticeable difference among

the three. The results of the program using n = 150 (where

n is the number of points to be plotted) are included in

Appendix B.

With n = 150, the average of the mean and mode ranks

(ANM) is essentially the same as the modified step rank (MS).

The largest difference at n = 150 is 2.0 x 10. At n = 300,

the maximum difference is 1 x 10- .

In contrast, the differences between the median rank

(M) and the other two is larger (by a factor of 102) at

n = 150. The largest difference between AMM and M is

1.34 x 10-. The largest difference between MS and M is
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1.32 x 10- 3. The difference is halved when n 300.

Although the median rank is different than the other

two plotting positions, the difference is still quite small.

This difference becomes very, very small as the number of

points to plot increases. Because the differences become

slight as n increases, the decision was made to use the

modified step rank in all calculations of critical values.

Test of the Program

As a test, the program for generating critical values

was run with 5000 samples of sizes n = 10, n = 20, and n =

30. As stated in Chapter III, this was done for the Kolmogorov-

Smirnov statistic so that the results could be compared with

tables previously published.

The program which carried the assumption of normality,

with V = 0 and a = 1, generated critical values which were

the same as Massey's (Massey, 1951). When the parameters of

the normal distribution were estimated by x and S, the results

were similar to those obtained by Lilliefors (Lilliefors, 1967).

The program is, thus, valid.

The Number of Samples Used

The program for testing the consisten-y of critical

values was run four times with a different seed each time.

The program generated critical values using 150, 300, 500,

1000, and 5000 samples. The only number of samples that

yielded consistent results through all four programs at all

levels of a was 5000. If a = .01 had not been desired for
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the critical value tables, 1000 samples appeared to generate

critical values similar enough to each other to be used at

the other levels of a. However, since a = .01 was desired,

5000 samples were generated for each sample size from n = 3

to n = 60 for each statistic.

Tables of Critical Values

Only two complete tables of critical values are pre-

sented. Table II is a list of critical values for the

Kolmogorov-Smirnov statistic when the sample is reflected

about the mean. Table III is the same information for the

modified Anderson-Darling statistic.

Only a partial table is presented for the Cramer-von

Mises statistic. Table generation was stopped because the

preliminary results of the power study were not promising

for any of the statistics. Upon completion of the power

study, it was found that the modified CVM statistic was

rarely better than the modified A-D statistic. The decision

was made to not waste computer resources generating a table of

apparently minimal utility.

For the power study, however, critical values of the

Cramer-von Mises statistic were needed for n = 10, n = 25,

A n = 40, and n = 60. A list of the critical values at these

values of n is included as Table XV.

Use of the Tables. The following is the sequence of

steps necessary to use Tables II, III, and XV.

1. Collect data (sample size = n)
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2. Double the sample by reflection about the

mean (as described in Chapter III).

3. Standardize the data by the following transfor-

mation:

1
1 S

where

xi = the original data point

zi = the standardized data point

= the sample mean

S = the sample standard deviation

4. Calculate the statistic (see Chapter II).

5. Enter the table at the desired ct-level and

appropriate value of n.

6. If the statistic is greater than the table value,

reject HO: the data are from a normal population.

The tables are located on subsequent pages.

Power Study

The power study was initially done versus five con-

tinuous distributions. A piwer study computer program was

also run using standard normal random deviates to validate

the study. The following is a list of the distributions used

and their corresponding tables:

1. Exponential (Table IV)

2. Cauchy (Table V)

3. Chi-squared with one degree of freedom (Table VI)

4. Chi-squared with four degrees of freedom (Table VII)

S. Double exponential (Table VIII)
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Notes About the Tables. Several things should be

noted about the tables. The first note is explanatory. The

column headed "calculation method" has two symbols listed.

The use of a single asterisk (*) indicates that the powers

in that row are for straightforward calculation of the sta-

tistic. The use of a double asterisk (**) indicates that

the powers in that row are for calculation of the statistic

after doubling the sample by reflection about the arithmetic

mean of the original sample.

The second item of note is that when the power is

greater when the reflection technique is used versus when

straightforward calculation is used, the power in the (**)

row is underlined.

The third point is that if one peruses Tables IV

through VIII, he will not find very many instances when the

doubled asterisked power is underlined. When it is under-

lined, it is for a symmetric distribution. In the case of

the Cauchy (Table V), one will notice: 1) that there is

minimal power improvement and 2) that improvement is with

large sample sizes. Most improvement is seen with the double

exponential, although still only with relatively large sample

sizes (Table VIII).

More Distributions. Because the improved power

appeared to be against symmetrical unimodal distributions,

it was decided to do additional power studies with the

logistic and Student's t with three degrees of freedom. A

study was done against the uniform just to see what would
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TABLE 11

Critical Values of the 'Modified Kolmogorov-Smirnov
Statistic for the Normal Distribution
(Parameters Estimated from the Sample)

a- level
.20 .15 TTF .05 .01

3 .20144 .21133 .22155 .23119 .23832

4 .19040 .20749 .22981 .25958 .29949

5 .18600 .19626 .20955 .22566 .25164

6 .16981 .17746 .18786 .20432 .24933
7 .15883 .16973 .18258 .20179 .23340

8 .14923 .15861 .16924 .18591 .21416
9 .14279 .15057 .16106 .17807 .20894
10 .13452 .14278 .153~09 .16858 .20295

11 .12990 .13734 .14731 .16308 .19580
12 .12535 .13225 .14163 .15788 .18677
13 .12046 .12708 .13649 .15045 .18021

14 .11654 .12344 .13171 .14519 .17046
15 .11272 .11924 .12818 .14087 .16812

16 .10893 .11483 .12334 .13621 .16301
17 .10721 .11287 .12029 .13293 .15758
18 .10334 .10929 .11811 .12912 .15234
19 .10152 .10724 .11447 .12630 .15069
20 .09938 .10500 .11187 .12217 .14629

21 .09732 .10321 .11096 .12284 .14452
22 .09416 .09965 .10693 .11735 .13980
23 .09337 .09849 .10548 .11523 .13596
24 .09005 .09543 .10246 .11350 .13664
25 .08818 .09328 .09931 .11045 .13294

26 .08777 .09302 .09986 .11062 .13309
27 .08608 .09120 .09780 .10760 .12760
28 .08498 .08957 .09583 .10612 .12750
29 .08254 .08753 .09404 .10381 .12427
30 .08144 .08635 .09190 .10019 .12038

45



TABLE II, continued

at-level

n .10 .15 .10 .05 .01

31 .07965 .08393 .09045 .09957 .11916

32 .07892 .08361 .08945 .09986 .11821

33 .07734 .08170 .08806 .09756 .11564

34 .07769 .08144 .08750 .09657 .11538

35 .07582 .0&003 .08570 .09352 .11001

36 .07436 .07874 .08381 .09204 .10847

37 .07389 .07808 .08367 .09170 .10814

38 .073S5 .07781 .08314 .09134 .10898

39 .07137 .07534 .08076 .08934 .10689

40 .07103 .07530 .08069 .08895 .10428

41 .07001 .07409 .07905 .08811 .10513

42 .06954 .07352 .07928 .08722 .10372

43 .06838 .07225 .07712 .08524 .10186

44 .06768 .07160 .07741 .08539 .10215

45 .06721 .07137 .07680 .08435 .10097

46 .06683 .07025 .07503 .08331 .09976

47 .06623 .06991 .07443 .08182 .09830

48 .06511 .06904 .07465 .08186 .09744

49 .06374 .06781 .07295 -.. 08038 .09496

50 .06363 .06690 .07226 .08051 .09377

51 .06347 .06766 .07239 .08056 .09575

52 .06253 .06614 .07085 .07849 .09352

53 .06205 .06534 .07006 .07751 .09103

54 .06153 .06488 .06965 .07704 .09189

55 .06111 .06477 .06941 .07682 .09342

56 .06070 .06433 .06902 .07631 .09068
57 .05938 .06299 .06739 .07477 .08903
58 .05995 .06304 .06773 .07561 .09026
59 .05923 .06249 .06703 .07393 .08664
60 .05828 .06166 .06608 .07301 .08669
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TABLE III

Critical Values of the Modified Anderson-Darling
Statistic for the Normal Distribution
(Parameters Estimated from the Sample)

a-level
n .20 .15 .10 .05 .01

3 .32197 .33708 .35211 .38220 .41027

4 .38954 .44834 .54657 .71621 1.01573

5 .41998 .47814 .55492 .65032 .74460

6 .40458 .44691 .50501 .62504 .95894

7 .41369 .46504 .54431 .67666 .94119

8 .42964 .47950 .55208 .69138 .94023

9 .43903 .49149 .70801 .70801 1.06640

10 .44203 .50275 .57780 .71245 1.05927

11 .44488 .50165 .59112 .73335 1.05248

12 .43843 .49746 .57663 .73101 1.08325

13 .04478 .49320 .57152 .72240 1.03260

14 .44722 .50810 .59214 .74576 1.07173

15 .45345 .51024 .59637 .74049 1.11475

16 .45242 .51498 .60171 .76214 1.14640

17 .46114 .51875 .60122 .76680 1.17257

18 .44973 .50160 .58093 .73484 1.12748

19 .44482 .51126 .59408 .75451 1.12149

20 .46305 .52665 .60590 .74583 1.05373

21 .45638 .51138 .59375 .75196 1.08071

22 .45134 .50675 .58571 .74983 1.15273

23 .46409 .53008 .62019 .76239 1.11597

24 .45368 .51731 .59381 .76619 1.07996
25 .45905 .52107 .61331 .76620 1.16808

26 .45657 .51742 .60062 .76192 1.14596

27 .46406 .52359 .61168 .75096 1.09041

28 .45768 .52019 .61730 .77880 1.17745

29 .45206 .51637 .60195 .74786 1.09862

30 .45293 .50558 .59092 .74476 1.10891
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TABLE III, continued

a-level
n .20 .15 .10 .05 .01

31 .45543 .51505 .60163 .74662 1.12114

32 .46263 .52015 .60162 .74479 1.13510

33 .46745 .53163 .63275 .77983 1.18250

34 .46426 .52163 .60482 .76331 1.18852

35 .45729 .52079 .60769 .78193 1.21168

36 .45770 .51452 .60661 .76218 1.13499

37 .46177 .52033 .61215 .76645 1.12664

38 .46404 .52357 .61461 .76417 1.13875

39 .45700 .51812 .60254 .76641 1.17802

40 .46694 .53085 .61657 .77795 1.15300

41 .45551 .51705 .61321 .76581 1.15760

42 .47180 .53721 .62564 .79213 1.24298

43 .46384 .51566 .60146 .75147 1.08809

44 .47371 .54434 .64197 .80843 1.16483

45 .45976 .52153 .61198 .77735 1.16194

46 .46785 .52882 .62071 .76338 1.21628

47 .46490 .52129 .60793 .77487 1.12421

48 .47582 .53170 .61815 .77982 1.17364

49 .48063 .54400 .63094 .78997 1.19872

50 .47218 .53726 .63046 .79205 1.16489

51 .47487 .53872 .62897 .78620 1.21199

52 .47148 .53079 .61907 .77005 1.12364

53 .47112 .54007 .63222 .79662 1.15710

54 .46084 .51778 .61277 .75934 1.16752

55 .47508 .53724 .63276 .77438 1.18181

56 .46565 .52901 .62268 .78599 1.17529

57 .45185 .51522 .60231 .78654 1.15393

58 .46904 .53178 .60645 .77380 1.13277

59 .47571 .54371 .62089 .76709 1.21326

60 .47305 .53179 .61611 .78893 1.19363
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TABLE IV

Powers for Testing H0 : Population Is Normal,

When Population Is Exponential

Actual Population: Exponential

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-levels
n * -straightforward .20 .15 .10 .05 .01

* =reflection .....

10 * .5710 .5120 .4318 .3208 .1612
10 ** .3670 .2914 .2206 .1388 .0390

25 * .8914 .8528 .7960 .6882 .4536
25 ** .5992 .5262 .4474 .3216 .1532

40 * .9828 .9752 .9556 .9074 .7204
40 ** .7716 .7120 .6318 .5140 .3202

60 * .9994 .9984 .9960 .9838 .9312
60 ** .9100 .8752 .8196 .7226 .5176

Statistic: Anderson-Darling

10 * .6688 .6120 .5282 .4120 .2356
10 ** .3782 .3104 .2396 .1668 .0616

25 * .9668 .9550 .9328 .8854 .7244
25 ** .6656 .6036 .5152 .3932 .1928

40 * .9980 .9962 .9928 .9840 .9444
40 ** .8428 .7924 .7206 .6016 .3730

60 * 1.0000 1.0000 .9998 .9994 .9948
60 ** .9412 .9172 .8798 .7898 .5556

Statistic: Cramer-von Mises

10 * .6306 .5764 .4944 .3842 .1970 I
10 ** .3502 .2818 .2134 .1318 .0494

25 * .9400 .9214 .8910 .8238 .6552
25 ** .5932 .5184 .4194 .2884 .1328

40 * .9950 .9906 .9838 .9656 .8952
40 ** .7432 .6738 .5810 .4528 .2354

60 * .9998 .9998 .9992 .9980 .9876
60 ** .8790 .8348 .7588 .6228 .3582
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TABLE V

Powers for Testing H: Population is Normal,

When Population Is Cauchy

Actual Population: Cauchy

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-levels
n = straightforwar .20 .15 .10 .05 .01

= reflection . . ..

10 * .7306 .6998 .6532 .5884 .4660
10 ** .6442 .6010 .5476 .4732 .3312

25 * .9558 .9452 .9298 .9000 .8385
25 ** .9532 .9432 .9328 .9066 .8372

40 * .9918 .9888 .9862 .9766 .9498
40 ** .9934 .9922 .9898 .9838 .9682

60 I .9994 .9990 .9986 .9970 .9926
60 ** 1.0000 .9998 .9994 .9990 .9976

Statistic: Anderson-Darling

10 * .7452 .7132 .6688 .6082 .5010
10 ** .6478 .6042 .5634 .5064 .3838

25 * .9662 .9610 .9524 .9358 .8870
25 ** .9618 .9538 .9414 .9246 .8708
40 * .9946 .9936 .9924 .9884 .9740

40 ** .9950 .9942 .9930 .9892 .9788

60 * 1.0000 1.0000 .9998 .9994 .9976
60 ** 1.0000 1.0000 1.0000 .9998 .9990

Statistic: Cramer-von Mises

10 * 7436 .7090 .6658 .6104 .4816
10 ** .6456 .6088 .5582 .4878 .3778

25 * .9644 .9578 .9468 .9294 .8826
25 ** .9608 .9508 .9404 .9196 .8724
40 , .9950 .9936 .9922 .9874 .9730

40* .9954 .9936 .9926 .9896 .9782

60 * 1.0000 .9998 .9998 .9992 .9980
60 ** 1.0000 1.0000 1.0000 .9996 .9986
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TABLE VI

Powers for Testing HO: Population Is Normal,

When Population Is x2 (1 d.f.)

Actual Population: X2 (1 d.f.)

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-levels

n =sra rward .20 .15 .10 .05 .01n **=reflection

10 * .7850 .7366 .6608 .5420 .3430
10 ** .5762 .4994 .4046 .2854 .1262

25 * .9904 .9860 .9738 .9492 .8484
25 ** .9262 .9000 .8616 .7692 .5636

40 * 1.0000 1.0000 .9996 .9990 .9864
40 ** .9896 .9844 .9726 .9490 .8570

60 * 1.0000 1.0000 1.0000 1.0000 .9998
60 ** .9996 .9990 .9984 .9950 .9775

Statistic: Anderson-Darling

10 * .8818 .8418 .7832 .6822 .4952
10 ** .5796 .5000 .4124 .2988 .1378

25 * .9994 .9992 .9980 .9930 .9662
25 ** .9314 .9066 .8600 .7654 .5228

40 * 1.0000 1.0000 1.0000 1.0000 .9994
40 ** .9918 .9862 .9746 .9430 .8238

60 * 1.0000 1.0000 1.0000 1.0000 1.0000
60 ** .9996 .9994 .9986 .9956 .9650

Statistic: Cramer-von Mises

10 * .8512 .8122 .7444 .6476 .4356
10 ** .S436 .4754 .3780 .2508 .1126
25 * .9978 .9964 .9922 .9818 .9398

25S* .9042 .8670 .7960 .6794 .4422A 40 * 1.0000 1.0000 1.0000 .9998 .9982
- 1 40 ** .9798 .9690 .9434 .8926 .7218

* 60 * 1.0000 1.0000 1.0000 1.0000 1.0000
60 ** .9990 .9984 .9952 .9834 .9044
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TABLE VII

Powers for Testing H0 : Population Is Normal,

When Population Is ×2 (4 d.f.)

Actual Population: x (4 d.f.)

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-levels
n *-straightforward .20 .15 .10 .05 .01

**=reflection

10 * .4138 .3488 .2716 .1806 .0708
10 ** .2694 .2064 .1406 .0740 .0112

25 * .6566 .5974 .5146 .3872 .1932
25 ** .3470 .2746 .2126 .1190 .0394

40 * .8340 .7910 .7248 .6036 .3548
40 ** .4106 .3362 .2582 .1612 .0652

60 * .9348 .9132 .8640 .7648 .5392
60 ** .4840 .4092 .3228 .2176 .0922

Statistic: Anderson-Darling

10 * .4768 .4020 .3068 .2162 .0980
10 ** .2794 .2168 .1586 .0920 .0208

25 * .7948 .7520 .6884 .5804 .3412
25 ** .4296 .3616 .2764 .1792 .0634
40 * .9394 .9164 .8820 .8102 .6198
40 ** .5370 .4698 .3910 .2730 .1308

60 * .9888 .9824 .9682 .9320 .8075
60 ** .6458 .5812 .5006 .3720 .1894

Statistic: Cramer-von Mises

10 * .4398 .3696 .2870 .1976 .0784
10 ** .2630 .2060 .1438 .0774 .0160

25 * .7402 .6830 .6122 .4928 .2852
25 ** .3698 .3014 .2194 .1308 .0494

40 * .9086 .8758 .8244 .7288 .5248
4 40 ** .4200 .3536 .2758 .1830 .0770

60 * .9752 .9622 .9416 .8946 .7506
60 ** .5152 .4384 .3506 .2330 .0922
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TABLE VIII

Powers for Testing H0 : Population Is Normal,

When Population Is Double Exponential

Actual Population: Double Exponential

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-levels
n *=straightforward 20 15 I0 05 01

**-reflection . . .. .

10 * .3604 .3030 .2376 .1572 .0646

10 ** .2874 .2306 .1698 .1090 .0330

25 * .5084 .4402 .3618 .2566 .1196
25 ** .5098 .4528 .3912 .2862 .1354

40 * .6376 .5858 .5114 .3852 .1820
40 ** .6702 .6150 .5440 .4312 .2616

60 * .7536 .7036 .6264 .4816 .2664
60 ** .8088 .7646 .7046 .6004 .4020

Statistic: Anderson-Darling

10 * .3728 .3170 .2414 .1636 .0664
10 .2716 .2172 .1708 .1140 .0368

25 * .5566 .5136 .4418 .3440 .1742
25 ** .5358 .4792 .4094 .3258 .1724

40 * .6958 .6444 .5794 .4846 .2914
40 ** .7012 .6558 .5970 .4994 .3180

60 * .8072 .7627 .6978 .5932 .3784
60 ** .8316 .8016 .7558 .6724 .4776

Statistic: Cramer-von Mises

10 .3696 .3130 .2416 .1592 .0546

10 .2770 .2252 .1708 .1104 .0428

25 * .5456 .4844 .4206 .3106 .1608
25 ** .5364 .4838 .4098 .3208 .1802

40 * .6896 .6408 .5688 .4544 .2646
40 ** .6878 .6476 .5890 .4986 .3210

60 * .8014 .7626 .7060 .6124 .3964
60 ** .8390 .8018 .7494 .6678 .4726
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TABLE IX

Powers fo, Testing H0 : Population Is Normal,

When Population is Logistic

Actual Population: Logistic

Statistic: Kolmogorov-Smirnov

Calculation method Powers at c-levels
n *=straightforward 20 15 10 05 .1

**=reflection . . ...

10 * .2486 .1990 .1418 .0874 .0252
10 ** .2328 .1752 .1200 .0676 .0118

25 * .2670 .2150 .1494 .0876 .0244
25 **.2774 .2174 .1620 .0932 .0292
40 * .2958 .2450 .1798 .1044 .0312
40** .3052 .2452 .1826 .1094 .0412

60 *.3306 .2736 .1990 .1130 .0342

60 ** .3542 .2990 .2306 .1588 .0582

Statistic: Anderson-Darling

i0 * .2498 .1950 .1374 .0806 .0244
10 ** .2158 .1634 .1126 .0638 .0128

* .2970 .2562 .1982 .1274 .0434
25 ** .2866 .2318 .1660 .1058 .0370

40 * .3378 .2750 .2208 .1536 .0556
40 ** .3264 .2734 .2156 .1412 .0600

60 * .3848 .3248 .2458 .1652 .0596
60 ** .3996 .3460 .2784 .1916 .0860

Statistic: Cramer-von Mises

10 * .2358 .1892 .1326 .0780 .0188
10 ** .2162 .1692 .1164 .0602 .0172
25 * .2792 .2208 .1712 .1020 .0346
25 ** .2858 .2284 .1622 .0980 .0388

40 * .3200 .2612 .2002 .1290 .0418
40 ** .3104 .2590 .1938 .1296 .0524

60 * .3552 .3048 .2384 .1578 .0592
60 ** .3816 .3276 .2582 .1776 .0764
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TABLE X

Powers for Testing HO: Population is Normal,

When Population is Student's t (3 d.f.)

Actual Population: Student's t (3 d.f.)

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-level
n *=straightforward 20 15 l0 05 01

**=reflection . . .. .

10 * .3610 .3066 .2500 .1726 .0838
10 ** .3028 .2498 .1836 .1174 .0378

25 * .5138 .4596 .3866 .3004 .1700
25 ** .5232 .4646 .4066 .3200 .1750

40 * .6324 .5892 .5132 .4140 .2482
40 ** .6646 .6124 .5468 .4632 .3288

60 * .7512 .7024 .6356 .5282 .3632
60 ** .7992 .7628 .7162 .6354 .4752

Statistic: Anderson-Darling

10 * .3778 .3214 .2612 .1884 .0990
10 ** .3026 .2524 .1994 .1356 .0552

25 * .5734 .5366 .4798 .4006 .2530
25 ** .5636 .5124 .4482 .3712 .2374

40 * .7054 .6634 .6148 .5352 .3788
40 ** .7124 .6734 .6226 .5446 .4076

60 * .8202 .7868 .7376 .6614 .5040
60 ** .8398 .8146 .7820 .7130 .5766

Statistic: Cramer-von Mises

10 * .3622 .3122 .2524 .1810 .0834
10 ** .3020 .2490 .1942 .1242 .0568

25 * .5470 .4964 .4376 .3506 .2266
25 ** .5500 .4998 .4310 .3518 .2302

40 * .6866 .6418 .5832 .4842 .3332
40 ** .6924 .6476 .5904 .5192 .3848

60 * .7962 .7618 .7142 .6454 .4892
60 ** .8256 .7964 .7540 .6874 .5464
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TABLE XI

Powers for Testing H: Population Is Normal,
When Population is Uniform (Continuous)

Actual Population: Uniform (Continuous)

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-level
n *=straightforward .20 .15 .10 .05 .01

**=reflection

10 * .2688 .2112 .1420 .0724 .0128
10 ** .3418 .2696 .1946 .1116 .0250

25 * .3704 .2998 .2156 .1172 .0294
25 ** .5718 .4900 .4078 .2596 .0856

40 * .5284 .4482 .3424 .1978 .0454
40 ** .7204 .6546 .5542 .4080 .1886

60 * .6800 .6012 .4918 .3038 .0952
60 ** .8790 .8328 .7586 .6162 .3340

Statistic: Anderson-Darling

10 * .3160 .2428 .1596 .0768 .0128
10 ** .3584 .2828 .2226 .1386 .0250

25 * .5570 .4890 .3866 .2500 .0690
25 ** .6814 .6122 .5190 .3746 .1384
40 * .7572 .6874 .5910 .4414 .1780
40 ** .8636 .8182 .7506 .6158 .3442

60 * .9178 .8816 .8038 .6670 .3310
60 ** .9708 .9540 .9218 .8478 .6038

Statistic: Cramer-von Mises

10 * .2880 .2194 .1450 .0690 .0102
10 ** .3338 .2798 .2098 .1216 .03221 25 * .4724 .3856 .2890 .1736 .047625 ** .6244 5530 .4528 .3182 .1250

40 * .6602 .5806 .4754 .3120 .1040
40 ** .7842 .7226 .6434 .5120 .2602
60 * .8194 .7732 .6950 .5416 .2366

60 ** .9262 .8960 .8454 .7334 .4588
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TABLE XII

Critical Values Used in the Power Study for
the Unmodified Kolmogorov-Smirnov Statistic

a-level
n .20 .15 .10 .05 .01

10 .21595 .22547 .23857 .25841 .29564

25 .14388 .15070 .15990 .17370 .19991

40 .11442 .11937 .12631 .13792 .16200

60 .09443 .09871 .10489 .11506 .13275

TABLE XIII

Critical Values Used in the Power Study for
the Unmodified Anderson-Darling Statistic

a-level
n .20 is .10 .05 .01

10 .46452 .51170 .58377 .68950 .90866

25 .49224 .53019 .59532 .70333 .98629

40 .50112 .55038 .61634 .72494 .99653

60 .50662 .55866 .63651 .76620 1.06946

TABLE XIV

Critical Values Used in the Power Study for
the Unmodified Cramer-von Mises Statistic

a-leveln .20 .15 .10 .05 .01

10 .07821 .08720 .10042 .12058 .17031

25 .08110 .09046 .10300 .12522 .17525

40 .08059 .08940 .10275 .12604 .17781

60 .08221 .09052 .10270 .12414 .17726
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TABLE XV

Critical Values Used in the Power Study for
the Modified Cramer-von Mises Statistic

a-level
n .20 .15 .10 .05 .01

10 .07142 .08137 .09636 .12401 .18158

25 .07181 .08269 .09921 .12744 .19170

40 .07477 .08630 .10250 .12890 .19513

60 .07370 .08433 .10076 .13065 .20545

happen.

The results using these three additional distribu-

tions are included in Tables IX, X, and XI, respectively.

Critical Values Used. The critical values used in

the power study for the modified K-S and A-D statistics are

the ones in Tabl~s II and III at n = 10, 25, 40, and 60.

The critical values for the CVM statistic modified by reflec-

tion are in Table XV.

The critical values used for the straightforward

calculation of the statistics are in Tables XII, XIII, and

XIV. Tables XII through XV were all generated using 5000

samples. This last set of tables is included for informa-

tional purposes only. The author does not claim that inter-

polation can be done for sample sizes not shown.

Summary

This chapter is essentially a collection of tables
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with explanatory comments. The tables display the important

results of this research effort. The next chapter is a short

discussion of the conclusions to be drawn from these results

and of any implications for further research.

|S
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V. Conclusions and Recommendations

This chapter is a presentation of the author's con-

clusions concerning his research and his recommendations for

further research with the modified statistics. First, a

review of Schuster's (1973; 1975) ideas which apply here

will be presented along with a restatement of the general

research hypothesis. Second, conclusions about how the

actual results compare with the hypothesized results are

presented. In the same section, conclusions are stated con-

cerning the "best" plotting position and the "best" number

of samples to use for the bootstrap technique of determining

critical values.

Review

The purpose of this research has been to test the

technique of reflecting data points about the arithmetic

mean before calculating previously developed goodness of fit

test statistics. This concept was motivated by work done by

Schuster (1973; 1975). The idea that samples can be reflected

about the mean is his. He used the concept to develop a dif-

ferent statistic than the ones which are presented and studied

in this paper. Schuster, however, predicted that the reflec-

tion concept would be helpful when testing within the set of

symmetrical distributions (Schuster, 1973). He also showed

that when the parameters are unknown and when testing within
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the set of symmetrical distributions, the statistic he

developed would be asymptotically better than statistics

calculated without incorporating some kind of reflection

technique (Schuster, 1975). Schuster further demonstrated

that his statistic would not show improvement when testing

a symmetrical versus a non-symmetrical distribution (Schuster,

1973).

Since the statistics studied here are also based upon

the same type of reflection, it was expected that using the

normal as the hypothesized distribution, 1) improved power

would be evident when deviates from other symmetrical distri-

butions were tested, 2) when improved power was evident, it

would be more evident as sample size increased (i.e.,

asymptotically better), and 3) no improvement would be evi-

dent in powers generated against the non-symmetric distribu-

tions.

The general hypothesis used to guide the research

was stated in Chapter I:

For the normal distribution, the K-S, A-D, and CVM

statistics, modified by calculation after doubling

* ;the sample by reflecting data points about the sample

mean, provide more powerful tests of goodness of fit

than do the same statistics calculated without re-[ flection.

Conclusions

Primary Research. Although the three new statistics
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tested in this thesis are not identical to Schuster's, the

predictions made based upon his work are valid. The powers

calculated for symmetrical alternatives to the normal are

asymptotically greater for the three modified statistics

than for the corresponding unmodified statistics. Also, the

powers for the three new statistics, when calculated for

non-symmetrical alternatives to the normal, are lower than

for their unmodified counterparts. This can be seen in the

power study tables of Chapter IV.

The general research hypothesis is only partially

valid. The modified statistics are not universally of

higher power than their unmodified counterparts. Higher

powers are evident only for larger sample sizes (n > 25 in

some instances, n > 40 in most instances) when continuous

symmetrical alternatives are tested. The only alternative

distribution for which the modified statistics display

higher power for all sample sizes is the continuous uniform.

Thus, the research hypothesis is false with (continuous)

non-symmetrical alternative distributions, partially true

for (continuous) symmetrical alternatives, and true when the

alternative distribution tested is the (continuous) uniform.

The problem implied by these conclusions is that

the applicability of the statistical tables generated is

limited. It is the author's conclusion that the tables are

useful when it has already been determined (or is highly

suspected) that the population from which the sample is drawn

is distributed symmetrically. Even with symmetrical
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distributions, the tables are only useful for larger sample

sizes. The only distributions for which the power with the

modified statistics is substantially greater are the double

exponential, Student's t with three degrees of freedom, and

the uniform.

Another thing the analyst should consider before

using these new statistics is whether the significant losses

of power against non-symmetrical distributions are worth

trading for the much smaller increases in power against the

symmetrical distributions. It must be remembered that HA

(the alternative hypothesis) is that the sample is not from

a normal population. If he has no knowledge of the popula-

tion from which the sample is drawn, the analyst could

sacrifice substantial power by using these modified statistics.

Finally, the power study tables have been integrated

into Table XVI. The statistic which had the highest power,

for a given sample size and a-level, have been listed oppo-

site the alternative distribution for which the power was

calculated. For instance, for the logistic distribution at

* a = .20 and n = 40, the most powerful statistic of the six

is the Anderson-Darling, calculated without reflecting the

A sample. Throughout Table XVI, an "S" in parentheses indicates

straightforward (unmodified) calculation of the statistic.

An "R" in parentheses indicates calculation of the statistic

after reflection. The non-symmetrical distributions tested

are not included in the table because, for all sample sizes

and all a-levels, the unmodified Anderson-Darling statistic
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TABLE XVI

The Statistics with Highest Power When Critical
Values for the Normal Are Tested Using Various

Symmetrical Alternative Distributions

Distribution a-level
Tested n .20 .15 .10 .05 .01

Uniform 10 A-D(R) A-D(R) A-D(R) A-D(R) A-D(R)
25 Ito t ti
40 it itIti

60

Logistic 10 A-D(S) A-D(S) A-D(S) A-D(S) A-D(S)
25 iti t fo

40 ift t tI
60 A-D(R) A-D(R) A-D(R) A-D(R) A-D(R)

Student's t 10 A-D(S) A-D(S) A-D(S) A-D(S) A-D(S)
(3 d.f) 25 it 1 IViti

40 A-D(R) A-D(R) A-D(R) A-D(R) A-D(R)
60 99

Cauchy 10 A-D(S) A-D(S) A-D(S) A-D(S) CVM()
25 A-D(S)

40 CVM(R) A-D(R) A-D(R) A-D(R) A-D(R)
60 A-flTRT o ti

Double 10 A-D(S) A-D(S) CVM(S) A-D(S) A-D(S)
Exponential 25 It it"

40 A-D(R) A-D(R) A-D(R) A-D(R) CVMjJ)

60 CVM(R) " A-D(R)
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is the most powerful for these distributions.

It should be noted that the evident predominance of

the Anderson-Darling statistic was the basis for not genera-

ting a critical value table for the modified Cramer-von Mises

statistic.

Ancillary Research Issues. The author's conclusions

about the other issues tested are made apparent in the deci-

sions discussed in Chapter IV. As far as determination of

the "best" plotting position to use with the bootstrap tech-

nique is concerned, the conclusion is that when large numbers

of statistics are to be plotted, it makes no difference which

of the three plotting positions is used.

The conclusion that 5000 (versus 150, 300, 500, and

1000) samples was the number of samples to use to generate

critical values is sufficiently explained in Chapter IV.

Recommendations for Further Research

The power study done for this thesis is extensive

and the conclusions, thus, are based on rather thorough re-

search. The author sees no apparent reason to make further

studies of this new technique with the normal distribution.

. However, the results of the power study when the

continuous uniform distribution is used are interesting. The

power increase that results is quite substantial. The powers

* .demonstrated are better than for any of the statistics tested

by Green and Hegazy (1976). Perhaps, if the technique of

reflection is applied to the same statistics to generate
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critical values for the continuous uniform, the resultant

powers for the uniform might be very high. This might, at

least, be the case when samples from symmetrical distribu-

tions are tested.

The only other suggestion concerns the number of

samples to use with the bootstrap technique. The decision

to use 5000 samples rather than investigate alternative

numbers between 1000 and 5000 samples was one of expedience.

Before the bootstrap technique is again used to find critical

values, numbers of samples greater than 1000 and less than

5000 should be examine +-r consistency at the a = .01 level

of significance. Some savings of computer resource may still

be possible.

:I
t 1
--I
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APPENDIX A

COMPAR

The computer code for comparing the median rank, the

modified step rank, and the average of the mean and mode

ranks as plotting positions is included in the following

three pages.

+
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APPENDIX B

Results of COMPAR

The results of program COMPAR are included in the

following six pages. These particular results are for when

there are 150 points to be plotted.
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A.P.zADIX C

Subroutines

nJ1l subroutines written and used by the auti~or are

included in this section. The purpose of each subroutineI

is discussed in Chapter III.

SUER0'UTI~ZVS(YL0W~,YUE UPDZ0ER,DURVUDUT
R-z% Ni,B ,vYL0;R DLOWER,MEE&R WL~RY~ UE,DGUT

Y= (UPIER -YL6WLR)/(LU22K,--R-

flOUT = (YVALUE 13B) / M

SUBROUTIN~E LI!ZDIF(,,D)
Lzu. p(*,n(*

EiTEGER I,N
DO 100 1 = 1,N

DI? (I),= F(I) HERAL (I) /RiF 5()
DIP I+)= F(I) - ((HEAL(I) 1.

100 COIiUE

SUBRO-UTIiE DSTiT (X, ,IFF XDIF )
I ~llv L , ER IV. 1

REAL XDIF,DIFF(*)
Ml = 2* M
XDIF = 0.0
DO 100 1 1 1:l

IF (DIF2(i) .GE. XDIF) XDIF DE= FI

100 'CONTIi:U
END

80



IN TE:,TE ,C U Il ,C U 42,J
R E AL u(*),s ,~nUJ,~,~1uj
COUNTi 0
C 0 U -T 2 =0
SUM = 0,.0
DO 100 J = 1,N

UJ = u(J)
IF (UJ .LE. 0.0) THEN

UJ = .0001
CCU' Tl =COUNTi + 1

ENDIF
UNJ1 =1.0 -U(N-J+l)

IF (UNJi .LZ. 0.0) THiEEN
UNJi .0001
COUiNT2 = CGUiNT2 + 1

LNUJ = IL0G(UJ)
iLNUNJ1 = IL0G(UNJ1)
SUM=((.0RA())10 (.'uNj+L.*iUij1)) SUM

100 CONTINUE
W5Sku..R = 0.0 - -EKLN SU'./k(N) .su)

ST~RCU~kECVx(N,,,slUAR)

RE aL U(* Sul,WSIOUAR, V,--UL
SUM~' = 0. 0
DO 100 J =1,N i(NV,.LU:L = (.O*RZ. L(J)) -l~ 1.) (0*( )

SUN~ sum + ((U(j) - v LuEri) * (u() i . u-)
100 CONTITUE

W3QUR =(1./(1.0*.cL:\)) +SUN~

END

SUBROUTINE DUBSAMIK( ,A)
INTEGiER IWi

REAL X(*),XBe.R
X~-. =0. 0

DO 100 1 =1,
4 100XB.,R = XBAR + x (I)

10C k.UT I UE
X3AR =XBAR/ii
DO 200 I1 1,N

X(i'i+I) =(2.0 *Xh~a) -X(I)

200 C'Z4NT11UE
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SUEROUTILAB 7-6TPLR(X ,N)

REAL X (*) ,u. , 13.LR,S ,Nl.fT
XSUXw = o.o0
NRATR = 0.0

DO 100 I = 1 N
XSUlr = xSUm + x(i)

1,L-0 c0:-UE
XBAR =XSUM/N

DO 200 1 1 1,N
Nll.--kBTR = NI~l.R,-TR +

200 COi"TI,;,.UE
S = S Q.RT( .. R-.TR/ (N -1
DO 300 I = 1,n

X(I) W XI) - xbR3)/s
300 CONTDL 't.

SU--.-UTINE XP~iT (N~,LD)

:,EAL Y1 ,Y2,D(O:*) ,LLWRD ERXC
Y1 = 0.5/N
Y2 = 1.5/N
LL-iOWER =D ( i
DUPER = 2
CAL 'IV2 LS (Y1 ,Y2,DL.OWl-R,DUPP-- h,0.0,XO)
IF (x0 .GF. 0.0) ThEN

DJ(O) = XO
ELSE
D(O) = 0.0

ND I:F
' 1 = (REAL(14;) - 1.5)/N
Y2 = (RZAL(74 ) - 0.5)/N

LDZOWER =D(NIN1

CiLL CVALS(Yl ,Y2,D.L0OWER,DU!llZ:-R, 1.0,X0)
1i-1US 1 = N + 1

ENDW
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'I79,D79,181 D81 DIF9C,Yb9,'Y91 L89,: 1 LIF95,:,I---6
+Y94,Y96 ,D94,D96,DI?099,L-98,Y0,9,10L8,~..T5

DO 100 1 = N

100 OUI'J1.UE

Y(O) U .0
2;.LS 1 N + 1
Col.* P80 = lOGG.O
00,'.285 = 1000O.0C
C AvY9O = 1000.0
U0i'.P95 = 100G.0
COPIP99 = 1000.0
LO 200 1 ~L10-

IF ffli) .IZ. 0.75) $JO0TO 300
IF (Y(I) GT. L0.75 .2 i.Y(I) .LE. 0.80) 11-

DIF80 = .80 - Y(I)
IF (D1F80 .LL. O;Oi~i8o) IH--i

CQjl.p8c = DipSo
y 79 = Y(I)
D79 = -LAI)

D81 = DIl

fl1F85 = .85 - -,-I)
IF (D1F85 .L.CCi-.P85) 'L-:-ZN

CONiP85 = -DIF85
Y84 = iI
D84 = D".I)
Y86 = Yll
:)86 = D(Is-)

FLSEIF MYI) . 6 .5 .,,,.D. v.(!) . .90)G~:
DIF90 = .90 -Y(I)

IF (DIp9o L0 CO>.P90) 'JlNjA cclB.9O = ZF90

L89 = 1)
Y91 = l 1



IF (=~i95 .LL i9.5) ~L

Ylj4 = f(I)
Y96 = Y(1+l)
D94 = Dl
D96 = D(1+1i'

:L*!IF,('.5l9 z

DIF99 = .99 ",:(1'
IF (LIF99 .L.C2.P9 f

COIOP99 = MF99
Y98 = Y(I)
Y10i0 = Y(I+1)
L98 = D(I)
D100 = D(1+1)

~l.IF

IF (DI:O8 0L.0o~) T:-iE.N
CV.h*180 = D79

IF (LIF85 E2 Q. 0.0) ThEN
CV2"85 = D84

FZSE
CiALL CV.S(Y8.r4,Y86,L)84,D80, .85,CVikL85)

EliDIF
IF (LFC.:Q. 00 ~~

CVaL9.O = fl89

E: LIF
IF (DILF95 .c. 0.) TlEENil

CVU.95 = L94

CALL C-VLS(94,,96,D94,96,.95,C1AL.-95)

IF (LIF'99 E~Q. 0.0) T-hEN
CVIJL99 = D98

1:LL"'E
CitLIL CVAuLS(Y98,YlUo,D9e,DlOo,.99,CVAz99)

NXLI F
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Ai~K.~IXD

COM'LIL

This program was used to determdrne the nuii.ber of

samiles to use for the bootstrap teennique and to vaiidate

the logic used to find critical values of tne ur.,-odified

11-olmogorov-Smirnov statistic.

RL L R(120),DIFFS(240),A,-'*,P,ZD&TTS(C,:50042,
+ 0V80,0V85,CV95,CV99

SEZ-Dl =21478.DO

DO 400 A=1,5

IF ( C'~ 1) SA! SIZ =153
IF (A EBQ: 2) S.,1:SIZ = 3J03
IF ( ErQ 3) s5.s7 = 503
IF : ;" 4)J SA- S I Z = 1003

IF EQ: 5)SIZ =5b03
DO 500 .4 10,30,10

:0100 J =1, 2 .I

CALL V S R TARRN
DO 2u0 K 1,

Y = R(K
CALl 1.DI),OR('y I

200 CiI.ZB
CALL~ 1ILLIF(iN,R,DIFFS)

DcT,.'S(J) = LILST
100 CNTIi UE

Z~T~S0) =0.0

SMPLS1 = A2 .SIZ + 1
C.A.Ll V S R'(Z2LTS: ,SS:'i-LS1)
Cit.LIL X!O0itT(S:A' SIZ DST&. S)

CALL CV-ZUE(DxsC8,vc9,v5v9,i.sz
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-RI.T2, '-F'OR ',i.IZ'I-STr.-' I$ LICS ~T N=
IRINT *,'CV.,%LBG = ',CV80

PRI.4T *, 'Vr.S5 = ',CV85

PR.I±iT *, 'CVL90 = ',CV90

PRII T *,'UV 4U,95 = ' V95
PRINT *, 'Lgh9 =',C9

500 CO.,TII'.UE
400 C2.I;TIiLUE
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LPB;I E

This program is typical of~ the programs used to

obtain critical values ofT the stcftistics. This particular

example is used to find critical values for ine A.nderson-

Darling statistic at samiple size, n = 40.

PROGRAM T.BLE2
I:' TEGZR $A I, ±,,>L 1 ,CliTl ,C.iJT2,

+ COtJNT1,COUNT2
REAL R(120) ,Y,.P,WSQUAR(O:5O04) ,WSQR.D,

+ CV8G,CV85,CV90,CV95,CV99
DCUBLE rRECISIO' S,;ED 1
SEEL1 =469857936.DO

CCUN T2 =0

S I Z =5000
N =40

PRIY2 ~IN = I ,1,' :DSwLSIZ I 'MESIZ
DO 100 J= 1,S*s.SIZ

CALi-L VUST(R,L*)

N = R* N
CALL i'i.;0R(,)

R(K) = P
200 CCXTINUE

CALL A.AR(.,R,W5R,CiT1 ,CNT2)
WSQtJAR(J) =WSQ-.RD

CGUN~T1 = C )U T1 + CM~T
100COUiT2 = C061,T2 + C.'1T2

100 C ON TI XUE
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S~u~S1 s~JsIZ+ 1
CALL VSRT.-(WS;Tht ,&.PLS 1

PIRliT*,I FORl ',S'NIZ,' SOL-L. iliG 'JT.,.ISTICS r. J=',
PRINT , CV.Ij8C = It l.V8O)
PRI1T * CV.&L85 = ',OV85
PRIIET I 'CVAL9u = 1, CV90
PRIA, T *, CVAL95 = It CV95
PRINT *,'CVALU99 = ;, V9
PRIAT*
PitI NT *1 'CuUNT1 = 'co0Uli
PRIA":T *, 'COU~iT2 = I C 0U 1, ,,2
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APPLNDIX F

P0WE.RS

This program is typical of tnose used in the power

study. This particular one is used to find powers for all

six statistics when tested against 5000 saumples of size,

n = 10, from the Cauchy distribution.

PROGR1 X POWERSIz"T'-. ER NRJKL 1i* 1COUiNT(4),P0OER(3G),CNT1,CNr72,I
REAL WK(360),R(120) ,S(120) ,T(120) ,LIFF S(240)I

+ Y ,P ,LILIES,LIUE2 , U2 R 1 , ALDR2, RVE,+ CRVM2,PWR(30)

DOUBLE PRECISION SEED1
SED1 = 1095785.DO
DO 600 I = 1,30

POWBR(I) = 0
600 COIi UB

Do 800 I = 1,4
COUNT(I) = 0

800 C ONTIiUE
R =10

DO 10C U = 1,5000
C&!..L GKCAY (SEED1,NH, WK,R)
CALL VSRTA(R,i-R) '
DO 200 K = 1,NR

200 COINTI.LISERWALL ZS X-,R(S ,NR)
CA.L DUBSAM(T ,NR)
* = 2 * NR
CALL SSTPAR(T,M)
CALL VSRT( S ,NR)
CALL VSRTAX(T,)
DO 300 L = 1,M

Y = T(,)
CALL D..0(YP)
M(L) P

300 CCNTI iUE
DO 400 L = 1,!R

Y = S(L.)

CALL ,.DiOR(Y,P)
S(L) =

400 C. ,TIUUE
ChLL LILDIF(I;R,S ,DIFFS)

* CALL DSTAT {i.R,DIFJS, UIS)
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CCUNiT(2) =COUNT(2) + CINU
CiddL CVF1(iR SCRVwIV)

.ON( = C U.Vi'O + Ci~j6lI

CCUNT(4) = C6UNT(4) + CNT2
CALL CVDI(, TCRiVl-2)
IF (LILIES .GT. .21595) THEN

POWIR(1) = P0WER(l) + 1
ENDIF
I? (LILIES .GT. .22547) TH~EN

POWBR(2) = POW*!-R(2) + 1
BNDIF
IF (LILIES .&aT. .23857) TE

POW--R(3) = POW#-.R(3) +1

IF (LLE GT. .25841) Ti .

IF (.LILIBS G&T. .20564) TF-E
POWEM(5 = PCWE(5) + 1

E!' DIP

IF ( :LILIE2 . %.L. .13452)ThMN

LNDIF
IF (1ILIE2 .GT. .14278) THEN

POWER(7 = c'OW]L"R(7) + 1

IF (LILIE2 L&T. .15309) TH~l,
1POWER(8) = POWE.-(8) + 1

EiNDIF
IF (LIlIE2 .UT. .16858) THE4

POWER(9) = POWSR(9) + 1

IF (LILIE2 .GT. .20295) IhEN
POWER(10) = OWE'(1o) + 1

IF (.AiMA"R1 . .46452) Thi-

POWER(11) =POW-iR(11) + 1

IF G.~lDiR1 .GT. .58377) TTICEi4
POWER(13) P ?WER(13) + 1

ENIF (- LAR1 .i:. .68950) 1I'EN
POWIER(14) =POW-E1)

EiDIF
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IT (.r.JDRl . .442U36) mzHal'
1?0*d-.R(15) PO±WER(15) + 1

IF (ill.-R2 GcT. .44275) THEN~

E.I oWE(17) = POWER(16) + 1

IF (ANDAR2 .GT. .57780) T"HEN
POWER(17) = 10WWh(17) +1

E~i I F
IF (A:,DiD.R2 .GT. .57740) -.Hv.N

POWER(18) = 20WER(18) + 1

IF (.uLR2 .GT. 1.7125) TIE
POWER(20) = POWER(19) + 1

E:;ZIF
IF (CiR G. .02) THE;

PcWL-R(22) = iOWER(20) + 1
E XLIF
IF (ORVIi .G-. .078210) THE.N

iP0WER(22) = i-0WER(21) + 1
LIF CVIGT.102)TE

iCWER(23) = iOWE-R(21j + 1
..IDIF
IF (cRVI; GTi. .12045) THEN

iOW--R(24) = OWER(24) + 1

IF (caRM .Gr. .12053) THEN

iPCWER(25) = POWE'h(25) + 1

IF(CRTNI2 .~..071429) THENi
0OW R(2 6) PCV:JLR(26) + 1

IF (CRV,":2 G'4'.. .081378) T:-,:
PODI?27 = POWa' R(27) + 1

IF' (CaVi;2.G;... .096362) THEN~
POW--R(28) = ±-oWEE(28) + 1

IF (CRV1E2 GrY. .124018) THE
p od1,R( 2 9) POW-R(29) + 1

I? (ChI)IF G. 1815E0) THL

10 0 C-C lTidiU

iRINT
RIT 
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itI:,T ",'Th -~~T~A ='iR'tRE AS .. ,W:

+ j ~ 9 5 1. *99 I

PH 1'TFOR ZILU'FORS:
eR:- T6,I4,T16,14,-T26,I4, 2'36,14,T46,14)',

+ I:T PCB()I=l ,5)
PRI *.T -'OR IUB IFCRS DOU ;LED:

+(PowER(I) i=6,lo
*,li 'FOR A Li.ESOi4-Dr.Rii. :

PRLT t6,I4, 14,26I4,236,I ,46,14)',
+ (2cw~(I),I=1,1)

r RIN *:, 'FOR 0RGI -V"dINISES

+ (QOW.zR(I) I=21 ,25)
PR INT M, 'FOR CRAXER-VOI' I'.ISES ~ULD

+ kiOw.4R(I) ,I=26,30)
.rRIi,"T *
.rRINT *

rJO 500 1 1,30
PWR(I) =POWER(I)/5CiOO.0

500 COhI:1U B
Th'Ii:;T *, T !'OWERS AT W = ,R,' ,.RE ALb 3kLLOWS:
PRIXi" 'FOR LILIEF'ORS:
IrRINT ' -T5,F6.4,T15,F-6.4,T25,F6.4,T35,F6.4,T45,F 6.4)',

+ (w()I= 1, 5)
PRI:. *~ 'OR -. ILI"AEFORS Dk"UBLED:
RIT'(T5',F6.4,Tl5,F6.4,T25,F6.4,Tr35,F6-.4,-.45,F6.4)',

+ (?WR(I),I=6,10)
YR:2*1 'FOR A-LERSO.-,j- xJI 4G:

PRI: T '(T5,Fo.4,T15,F26 4,T25,F6.4,T35,F60.4,:-45,Y 6.4) ',
+4 (?-WR(I),I=11,15)
K, Ia 1*, T 'FOR ADSi-~~~foUBiED:
PRI 2 'T T5,F6.4,T15,F6.4,T25,F6.4,T35,F-Z6.4,T45,Fo6.4)',

+ (PWR(I),I=16,20)
iRi.;T *,'FOR CRtdhIER-VC;N YLISES:
iRII T '(T5,F6.4,T15,F6.4, T25,F-6.4,T35,F6.4,T45,F76.4) ,

+ (PWR(I),I=21,25)
PRINT *'FOR r-RA:Th-VON iNISES D, Z31ED:
liIX T 'T5,F-6.4,T.15,F6.4,T25,F6.4,T35,F6O.4,T45,F6.4) ',
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iRI 1 , 'COUI T1 = 'Cc!U"T(l)
! RI', , 'CAiLT2 O'2.Juliffl)

:a.; 7 , 'C--UX-T3 ='C.~ 5
PRI± , 'COUia 21 N 4

* ENDl
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